Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Too Young

今天做了一套模拟题,成功爆20。

这套题出题人全程暴力%,今朝笑话讲的好,——。

但我笑着笑着就笑不出来了。

然后就爆20了 。

在众多毒瘤题的包围下来一套简单的小水题,可以愉悦身心、增加信心…

这么简单地一套题相信大家都已经轻松AK了,不过CSP-S可就不一定也这么水了,希望大家在CSP-S的第一年也能RP++,虐场快乐

——出题人

我:?

这是第一题,后两道太NaN

题目

大学选课真的是一件很苦恼的事呢!

Marco:“我要两年毕业!我要选尽量多的学分!这些课统统选上!”

长者:“你啊,Too Young!你看看作业量,你做的完吗?”

Marco(笑容逐渐消失.gif):”那可咋整啊?“

长者:"还能咋整?退课呗!“

已知 Marco 选了 N(1N500)N(1 \leq N \leq 500) 门课,每门课有学分 wiw_i ,劳累度 viv_i 和挂科概率 pip_i

其中,wiw_i[1,5][1,5] 范围内的一个正整数,viv_i是 int 范围内正整数, pip_i[0,1][0,1]范围内小数;

现在 Marco 想退掉某些课使得自己的劳累度尽量小,但是,如果 Marco 的学分总数达不到给定的 MINXMINX,他会被退学。

Marco想知道,在期望学分大于等于 MINXMINX 的情况下,他的最小劳累度是多少。

注意:如果一门课挂科,Marco 将付出 viv_i 的劳累度但是无法获得相应学分;否则,Marco 将付出 viv_i 的劳累度并收获 wiw_i 的学分。

输入格式

第一行一个正整数 NN 表示课程数量

接下来 NN 行,每行空格分开的 33 个数 wi,viw_i,v_ipip_i ,含义如题面所述

最后一行一个正整数 MINXMINX 表示所需最小学分。

输出格式

一行一个正整数表示最小劳累度。

数据范围

本题共 10 个测试点,每个测试点 10 分。

对于 10%10\% 的数据,1N101 \leq N \leq 10

对于 30%30\% 的数据,1N201 \leq N \leq 20

对于另外 20%20\% 的数据,pi=0p_i=0

对于 100%100\% 的数据,

1N5001 \leq N \leq 500

wiw_i 是正整数且 1wi51 \leq wi \leq 5

pip_i最多包含 22 位小数且0pi10 \leq pi \leq 1

viv_i是 int 范围内正整数.

保证全选的情况下 Marco 不会被退学。

输出时每行末尾的多余空格,不影响答案正确性

样例输入

1
2
3
4
2
1 233 0
2 1 0.5
1

样例输出

1
1

样例解释

只选择第 22 门课,期望学分为 20.5=12*0.5=1 分,劳累程度为 1

思路

最开始想的是f[i][j]表示考虑到了第i门课,劳累度为j时得的最大分数

然后发现j的范围太大。。。

又想着拿f[i][j]表示考虑到第i门课,期望得分j的最小劳累度

但期望得分是小数啊!!

然后瞎鸡儿写了个n<20,dfsn>20,瞎Dp

此题爆零。

赛后看题解:

UTOOLS1572264681454.png

UTOOLS1572264715976.png

好,好的!

还有一个卡精度的问题。

借一下唢呐大佬的图

UTOOLS1572264861444.png

啥??

然后我发现

100 - p * 100也是不行的

加上0.01或者round(100 - p * 100)都能过??

算了算了,以后记得用round。

代码

就这么几行。。。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <cstdio>
#include <algorithm>
#include <cmath>

const int MAXN = 505;

int w[MAXN], v[MAXN];
long long f[MAXN * MAXN];
int n;
int minx;
int maxW = 0;
long long ans = (1ll<<60ll);

int main (void) {
freopen("young.in", "r", stdin);
freopen("young.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
double p;
scanf("%d%d", w + i, v + i);
scanf("%lf", &p);
w[i] *= round(100 - p * 100);
maxW += w[i];
}
scanf("%d", &minx);
minx *= 100;
for (int i = 1; i <= maxW; ++i) {
f[i] = (1ll<<60ll);
}
int sum = 0;
for (int i = 1; i <= n; ++i) {
sum += w[i];
for (int j = sum; j >= w[i]; --j) {
f[j] = std::min(f[j], f[j - w[i]] + v[i]);
}
}
for (int i = minx; i <= sum; ++i) {
ans = std::min(ans, f[i]);
}
printf("%lld\n", ans);
return 0;
}

评论